NAG C Library Function Document nag dpbstf (f08ufc)

1 Purpose

nag_dpbstf (f08ufc) computes a split Cholesky factorization of a real symmetric positive-definite band matrix.

2 Specification

3 Description

nag_dpbstf (f08ufc) computes a split Cholesky factorization of a real symmetric positive-definite band matrix B. It is designed to be used in conjunction with nag dsbgst (f08uec).

The factorization has the form $B = S^T S$, where S is a band matrix of the same bandwidth as B and the following structure: S is upper triangular in the first (n+k)/2 rows, and transposed hence, lower triangular in the remaining rows. For example, if n = 9 and k = 2, then

$$S = \begin{pmatrix} s_{11} & s_{12} & s_{13} \\ & s_{22} & s_{23} & s_{24} \\ & s_{33} & s_{34} & s_{35} \\ & & s_{44} & s_{45} \\ & & & s_{55} \\ & & & s_{64} & s_{65} & s_{66} \\ & & & & s_{75} & s_{76} & s_{77} \\ & & & & s_{86} & s_{87} & s_{88} \\ & & & & s_{97} & s_{98} & s_{99} \end{pmatrix}$$

4 References

None.

5 Parameters

1: **order** – Nag OrderType

Input

On entry: the **order** parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by **order** = **Nag_RowMajor**. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: **uplo** – Nag UploType

Input

On entry: indicates whether the upper or lower triangular part of B is stored as follows:

if $uplo = Nag_Upper$, the upper triangular part of B is stored;

if $uplo = Nag_Lower$, the lower triangular part of B is stored.

Constraint: uplo = Nag_Upper or Nag_Lower.

[NP3645/7] f08ufc.1

3: \mathbf{n} - Integer Input

On entry: n, the order of the matrix B.

Constraint: $\mathbf{n} \geq 0$.

4: \mathbf{kb} – Integer Input

On entry: k, the number of super-diagonals of the matrix B if $\mathbf{uplo} = \mathbf{Nag_Upper}$, or the number of sub-diagonals if $\mathbf{uplo} = \mathbf{Nag_Lower}$.

Constraint: $\mathbf{kb} \geq 0$.

5: $\mathbf{bb}[dim]$ – double

Input/Output

Note: the dimension, dim, of the array **bb** must be at least max $(1, \mathbf{pdbb} \times \mathbf{n})$.

On entry: the n by n symmetric band matrix B. This is stored as a notional two-dimensional array with row elements or column elements stored contiguously. The storage of elements b_{ij} depends on the **order** and **uplo** parameters as follows:

```
if \mathbf{order} = \mathbf{Nag\_ColMajor} and \mathbf{uplo} = \mathbf{Nag\_Upper}, b_{ij} is stored in \mathbf{bb}[k+i-j+(j-1)\times\mathbf{pdbb}], for i=1,\dots,n and j=i,\dots,\min(n,i+k); if \mathbf{order} = \mathbf{Nag\_ColMajor} and \mathbf{uplo} = \mathbf{Nag\_Lower}, b_{ij} is stored in \mathbf{bb}[i-j+(j-1)\times\mathbf{pdbb}], for i=1,\dots,n and j=\max(1,i-k),\dots,i; if \mathbf{order} = \mathbf{Nag\_RowMajor} and \mathbf{uplo} = \mathbf{Nag\_Upper}, b_{ij} is stored in \mathbf{bb}[j-i+(i-1)\times\mathbf{pdbb}], for i=1,\dots,n and j=i,\dots,\min(n,i+k); if \mathbf{order} = \mathbf{Nag\_RowMajor} and \mathbf{uplo} = \mathbf{Nag\_Lower}, b_{ij} is stored in \mathbf{bb}[k+j-i+(i-1)\times\mathbf{pdbb}], for i=1,\dots,n and
```

On exit: B is overwritten by the elements of its split Cholesky factor S.

6: **pdbb** – Integer

On entry: the stride separating row or column elements (depending on the value of **order**) of the matrix B in the array **bb**.

Constraint: $\mathbf{pdbb} \ge \mathbf{kb} + 1$.

7: **fail** – NagError *

Output

Input

The NAG error parameter (see the Essential Introduction).

 $j = \max(1, i - k), \dots, i.$

6 Error Indicators and Warnings

NE INT

```
On entry, \mathbf{n} = \langle value \rangle.
Constraint: \mathbf{n} \geq 0.
On entry, \mathbf{kb} = \langle value \rangle.
Constraint: \mathbf{kb} \geq 0.
On entry, \mathbf{pdbb} = \langle value \rangle.
Constraint: \mathbf{pdbb} > 0.
```

NE_INT_2

```
On entry, \mathbf{pdbb} = \langle value \rangle, \mathbf{kb} = \langle value \rangle.
Constraint: \mathbf{pdbb} \ge \mathbf{kb} + 1.
```

f08ufc.2 [NP3645/7]

NE_CONVERGENCE

The factorization could not be completed, because updated element $b(\langle value \rangle, \langle value \rangle)$ would be the square root of a negative number. Hence B is not positive definite. This may indicate an error in forming the matrix B.

NE ALLOC FAIL

Memory allocation failed.

NE BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

The computed factor S is the exact factor of a perturbed matrix B+E, where

$$|E| \le c(k+1)\varepsilon|S^T||S|,$$

c(k+1) is a modest linear function of k+1, and ε is the **machine precision**. It follows that $|e_{ij}| \le c(k+1)\varepsilon\sqrt{(b_{ii}b_{jj})}$.

8 Further Comments

The total number of floating-point operations is approximately $n(k+1)^2$, assuming $n \gg k$.

A call to this function may be followed by a call to nag_dsbgst (f08uec) to solve the generalized eigenproblem $Az = \lambda Bz$, where A and B are banded and B is positive-definite.

The complex analogue of this function is nag zpbstf (f08utc).

9 Example

See Section 9 of the document for nag_dsbgst (f08uec).

[NP3645/7] f08ufc.3 (last)